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Abstract. In the present communication, we consider the quantum properties for the codirectional three-
mode Kerr nonlinear coupler. We investigate single-, two- and three-mode quadrature squeezing, Wigner
function and purity. We prove that this device can provide richer nonclassical effects than those produced
by the conventional coupler, i.e. the two-mode Kerr coupler. We show that it can provide squeezing and
the quadrature squeezing exhibiting leaf-revival-collapse phenomenon in dependence on the values of the
interaction parameters. In contrast to the conventional Kerr coupler two different forms of cat states can
be simultaneously generated in the waveguides. We deduce conditions required for the complete disentan-

glement between the components of the system.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements — 42.60.Gd Q-switching

1 Introduction

The optical coupler is a device composed of two (or
more) waveguides, which are placed close enough to al-
low exchanging energy between waveguides via evanescent
waves [1]. Recently, this device has attracted much atten-
tion for several reasons. The progress in the optics commu-
nication and quantum computing networks requires data
transmission [2]. This simple device has potential applica-
tions in all-optical switching [3,4]. Furthermore, it pro-
vides electromagnetic fields with an exceptionally wide
range of nonclassical effects. Most importantly this de-
vice has been implemented [5,6] and applied in many
experimental approaches, e.g. in picosecond switching in-
duced by saturable absorption [7], optical multi-mode in-
terference devices based on self-imaging [8] and photonic
bandgap structures in planar nonlinear waveguides [9].
Also the generation of correlated photons in controlled
spatial modes by downconversion in nonlinear waveguides
has been discussed in [10].

Quantum mechanically, there are different types of di-
rectional couplers. For instance, symmetric coupler [11]
(linear (or nonlinear) processes are involved in both the
waveguides), asymmetric coupler [12] (at least one of the
waveguides possesses different nonlinearity than the oth-
ers), Raman-Brillouin coupler [13], bandgap coupler [14]
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and Kerr coupler [15-22]. For more details about their
properties the reader can consult the review papers [23].

Kerr nonlinear coupler (KNC) has taken a considerable
interest in the literature since the third-order nonlinearity
provides an effective mechanism for generating nonclas-
sical effects in the electromagnetic waves caused by the
processes of self-phase and cross-phase modulations. Also
this is related to potential advantage of the possible ob-
servation of the large values of third-order optical nonlin-
earities in the organic polymers [5]. In this regard the gen-
eration of continuous variable Einstein-Podolsky-Rosen
entanglement via Kerr nonlinearity in an optical fiber [24]
as well as the generation of spatial soliton arrays in a
planar Kerr waveguide from seeded spontaneous para-
metric down conversion [25] are achieved. Several pa-
pers have been devoted to the quantum properties of the
KNC in the framework of rotating-wave approximation
by neglecting the rotational terms in such a way that a
closed form solution is obtained [15-20]. In this case KNC
has provided many of interesting effects such as revival-
collapse phenomenon (RCP) in the mean-photon num-
bers, squeezing of vacuum fluctuations, sub-Poissonian
statistics in single as well as in the compound modes [15].
The phase distribution of KNC has been investigated
showing that the phase-difference evolution is closely con-
nected with the energy exchange between waveguides and
the RCP in the mean-photon numbers is due to the bifur-
cation of the phase-difference probability distribution [17].
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Furthermore, the geometry of the waveguides has been
considered via varying linear coupling coefficients in the
codirectional KNC [16] and contradirectional KNC [19,
20]. In these cases it has been shown that there is a possi-
bility to control the switching characteristics and principal
squeezing effect by adjusting the shape of the waveguides.
Quite recently, we have investigated the single-mode quan-
tum properties of the codirectional Kerr nonlinear coupler
when the frequency mismatch is involved and a condition
for obtaining an exact solution for the equations of motion
is fulfilled [21,22]. For this case we have shown that the
mean-photon numbers exhibit oscillatory behaviour rather
than revivals and collapses. Additionally we have proved
that the Schrodinger-cat states, in particular, Yurke-Stoler
cat states (YSCS) [26] can be generated. Also the higher-
order squeezing has been investigated [22].

Till now the KNC has been treated as a two-mode
device. In the present paper we give for the first time —
as far as we know — the three-mode version of this de-
vice. The motivation of developing such device is that the
three-mode KNC can provide nonclassical effects richer
than those obtained from the conventional coupler (i.e.
the two-mode version), as we shall show throughout the
paper. As is well known that the basic efforts in the quan-
tum optics is to enhance the nonclassical effects. Addition-
ally, we show that the quadrature squeezing exhibits leaf-
revival-collapse phenomenon in dependence on the values
of the interaction parameters. In this phenomenon the re-
vival patterns provide leaf shapes and between two revival
patterns short collapse period occurs. It is worth remind-
ing that for the standard revival-collapse phenomenon the
revival patterns have ellipsoid shape. We proceed that, in
contrast to the conventional Kerr coupler two different
forms of cat states can be simultaneously generated in the
waveguides. The investigation of the three-mode KNC will
be given in the following order: in Section 2 we give the
Hamiltonian for the system and the solution for the equa-
tions of motion. Also we derive the expectation values for
different moments of operators, which will be used in the
paper. In Section 3 we investigate the quadrature squeez-
ing. In Section 4 we discuss the evolution of the Wigner
function and the purity for the single-mode case. In Sec-
tion 5 we give the main conclusions from the results.

2 Model formalism and dynamical solution

In this section we give the Hamiltonian for the system and
derive the solutions for its equations of motion.

The Hamiltonian controlling the three-mode codirec-
tional Kerr nonlinear coupler can be represented as
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Fig. 1. Scheme of realization of interaction (1).

where A; = wy—ws, and Ay = wy; —ws. The waves are des-
ignated by a; (fundamental and/or first), a2 (second) and
a3 (third) modes with frequencies wy,ws and w3, respec-
tively. The coupling constants x; and X; are proportional

to the third-order susceptibility x(3) and are responsible
correspondingly for the self-action and cross-action pro-
cesses of the jth mode. The linear coupling between the
waveguides are represented by A; and Ao, which we as-
sume to be real. Hamiltonian (1) gives a generalization to
several models discussed in the literatures earlier by con-
trolling the values of the coupling constants such as anhar-
monic oscillator [27], up-conversion process [28] and two-
mode KNC [21]. The scheme describing Hamiltonian (1)
is shown in Figure 1 and can be explained as follows. Two
waveguides are operating by Kerr-like nonlinear processes.
In the first waveguide the fundamental mode a; propa-
gates, while in the second waveguide the second as and
third as modes propagate. The interaction between the
fundamental mode and the second-third modes occurs via
the evanescent waves. We have assumed that the all waves
are propagating with the same velocity v, hence the time ¢
and travelled distance z are related by z = vt. Outgoing
fields can be detected as single or compound modes by
means of homodyne, photocounting or coincidence detec-
tion in the standard way. Throughout the investigation of
the system we do not consider dissipation, which generally
decreases the amount of nonclassical effects.

We have to comment that the linear coupling co-
efficient is from the wave equation equal to A/v =
w2y @ /2kc?, whereas the nonlinear coupling coefficients
are x/v = w?x® /2kc? (v being the speed of light in
the medium, w being frequency of the travelled wave
and k is its wave number). Taking into account that
values of quadratic susceptibilities lie in an interval
1071410719 m/V and values of cubic susceptibilities in
an interval 10717 —10"13 mQ/V2 for various nonlinear ma-
terials, then in the optical region the values of \/v lie from
10* to 10" m~! and values of x/v from 10 to 10° m~*. So
the effects predicted should be expected to be observable
in samples of the length of centimeters and in nanosecond
scales.
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Now introducing new operators /Alj = a; exp(iw;t), j =
1,2,3 we can write the Heisenberg equations for (1) as

dA , it Y it i\ A
S =i (QXIA{AI + X, Ab Ay +y2A;A3> A

—iM Ay —idoAs,
dA _ e\ e
d—tQ =—1 (2X2A£A2 + xlAifh + X3A;T;A3) Az —iM Ay,
dA , it it AN Ae —ive A
d—t3 = —1 (2X3A§A3 +Y2A11-A1 +¥3A12-A2> AB - Z)\QAI-

(2)

To solve (2) exactly we assume the processes of the self-
action and cross-action compensate each other in the evo-
lution of the system. This can be expressed as x = x1
X2 = X3, X = X1 = X2 = X3 and 2y = X. In fact, the
cross-spectral coupling between various waveguides may
be comparable with the self-coupling provided that the
surfaces of the waveguides are of high quality (roughness
is much less than the wavelength) to avoid a substan-
tional reduction of amplitudes by evanescent damping.
As follows from the values for quadratic and cubic sus-
ceptibilities both the linear and nonlinear couplings may
be simultaneously significant for sufficiently strong fields.
Under these conditions one can easily prove that

ATA, + AlAy + AlAz = N (3)
is a constant of motion. Based on this fact the system of
equations (2) can be modified via the substitution B; =
exp(2ix]§7t)/1j, j =1, 2, 3 and takes the form
dBi .~ .~ dBy . dBy . .
—— = —iA1By—iAo By, — = —i\1 By, — = —i\2DB;.
di 112223,dt Zlhdt tA2D1
(4)
The system (4) can be easily solved, e.g., using Laplace
transformation, and the general solution is

Ai(t) = exp(2ith){d1(0) cos ut

- i%()\ldg(O) + A2a3(0)) sin ut},
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where 1 = /A2 + \3. There are several facts which can
be extracted from the structure of the Hamiltonian (1),
the solution (5) and Figure 1. When a3(0) < d2(0) and
A1 < Ay one obtains Ay(t) < As(t). The nature of the
coupler, i.e. the switching of energy between waveguides,
manifests itself by periodic functions in (5), whereas the
Kerr nonlinearities in the waveguides are described by
the nonlinear (quadratic) phase, which plays an essential
role in generating the nonclassical effects. On the other
hand, the fundamental mode a; can provide richer non-
classical effects than those produced by the second and
third modes as well as the conventional coupler [21,22]
(see Fig. 1). This is resulting from the coupler mechanism,
which switches the energy in the second-third mode (sec-
ond waveguide) jointly to the fundamental (first waveg-
uide) and vice versa.

On the other hand, the nature of the field quantization
is evident where one can easily prove from (5) that

(450, 45 (8)] =8, (6)

where §; i/ is the Kronecker delta and j, 7' = 1,2, 3. In the
derivation of (6) one has to use the identities

exp (fQith) ;(0) exp (2ith) = a,;(0) exp(2ixt),

exp (—22’)(]\775) d;-(O) exp (22’)(]\775) = &; (0) exp(—2ixt).
(7)

Furthermore, the mean-photon number for the funda-
mental and second modes are:

A1) (1) = i (0)a (0) cos® (ut) + [\ab(0)a2(0) + X3a}(0)as(0) + Mda (a(0)as(0) + a2(0)a}(0) ) %(Q”t)
[ (a1(0)af(0) — af 0)a2(0)) + Ao (a1(0)a5(0) — a{ (0)as(0)) | Sinéi“t)
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From (8) the correlation between modes and switching
mechanism, i.e. when one photon is created in the one of
the modes the other is annihilated in the other mode, are
quite obvious.

We close this section by calculating the moments

(H AT"J AmJ ) when the modes are initially prepared in
=1

the coherent states |1, a2, avg) and o are real. From (5)
one can easily deduce that
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where n;, m; are positive integers,
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= 5 3 lmm; = 1) = s — 1)

+ mq(ma + mg3) + mams — ni(ng + ng) — nang
ho = mi1 +mo +m3 —ny —ng — N3 (10)
and

sin(ut)

a1 (t) = ag cos(ut) — i[Ad1az + Aaas]

= Uiz

(t) + i1y (t),

202 1 2A1 203 .
as(t) = as {1 — F L qin? (yﬂf)} — % sin?
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~ MO G (i) = s (£) + sy (8),
o1~ 2 ()] - 2 ()
fﬂmmww%mwmm> (11)

Expression (9) will be frequently used in the paper. It is
obvious that when xt = mm and m is integer, i.e. z = 1,
this expression reduces to that for the coherent light with
amplitudes &;(¢) indicating that the system produces co-
herent light periodically. Also from this expression one can
easily check that </1;mj A;n’ ) = (A;rflj)mJ This means
that the system is Poissonian, i.e. it cannot exhibit sub-
Poissonian statistics, and the mean-photon numbers can-
not provide RCP. Expression (9) reduces to that of the
two-mode KNC [21] when A2 = 0 and a3 = 0. Now we
use the calculations given here to investigate quadrature
squeezing, Wigner function and purity in the following
sections.

3 Quadrature squeezing

Squeezing is a pure nonclassical phenomenon without clas-
sical analog. Squeezed light has less noise in one of the field
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quadrature than the vacuum level and an excess of noise
in the other quadrature such that the uncertainty prin-
ciple is satisfied. Squeezed light can be measured in the
homodyne detection. This light has a lot of applications,
e.g., in optical communication networks [29], quantum in-
formation [30] and high precision measurements. In this
section we investigate the single- and two-mode squeezing
and shed the light briefly on the evolution of the three-
mode squeezing. In doing so we define two quadratures X,
and }Afn as

:_ZA

n

LS4 (1) — Al o),

At Vv —
)+ A;@)], Yo = o
J=1

(12)
where n takes on values 1, 2 and 3 associated with
the single-, two- and three-mode squeezing, respectively.

Quadratures (12) satisfy the following commutation rule:
1Cy,
2
where C), is a c-number and takes on the value C; = 1,

Cy = 2, (5 = 3. The uncertainty relation associated with
the commutation rule (13) is

<(Axn)2> <(m)2> >

where ((AX,,)?) = (X2) —
given for ((AY;)?). The system is said to be squeezed in
the X, -quadrature if

S, =4 <(AXn(t))2> —|C,| < 0.

The equality sign in (15) holds for minimum-uncertainty
states. Similar definition can be given for the Y-
quadrature (defining a @,-factor). Based on (9) and (15)
we investigate the single- and two-mode squeezing in de-
tails and comment on the three-mode squeezing. As we
deal with the Kerr media we can expect squeezing in the
guided modes in all these types.

[XnYn} - (13)

Cnl?
16 7

(14)

(X,,)? and similar form can be

(15)

3.1 Single-mode squeezing

The squeezing factors for the jth mode can be straight-
forwardly evaluated as

SP(E) = 202,(8) + 203, (8) + 2{ [02, () — o2, (1)] cos 6,
+ 200, (t) vy () sin ©4 } exp[—2esin?(2xt)]

— 4 [ajz(t) cos O + ajy(t) sin O,)? exp|—4esin?(yt)],

QP (t) = 202,(1) + 202, (1) — 2{[03,(t) - 2, ()] cos O
+ 2054 (t) gy (t) sin ©4 } exp[—2esin?(2xt)]

— 4oz (t) sin O — ajy(t) cos O,)? exp|—4esin®(yt)],
(16)
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where

O = 2xt + esin(4xt), O3 = esin(2xt). (17)
The subscript 1 means single-mode squeezing and the su-
perscript j denotes the mode under consideration. Now
we give some analytical results showing that the sys-
tem can provide single-mode squeezing depending on the
values of the interaction parameters. For instance, when
(a1, @2,a3) = (a,0,0) and xt = mm/2, m is odd inte-
ger, expressions (16) give for the fundamental and second
modes the following:

SF) (t) = —4a? cos? (ut) exp(—4e),
M (t) = 402 cos?(ut),

Aa? |
S§2) (t)y=14 IILQ sin®(ut),
2.2
52) (t) = —4)\L§ sin®(ut) exp(—4e). (18)

It is worth reminding that the expression associated with
the third mode can be obtained from that of the second
mode via the transformation A\; < Ay and as «— as.
From (18) the complementarity between the squeezing
factors in the two waveguides is obvious, i.e. maximum
squeezing in the first waveguide is accompanied by min-
imum squeezing in the second waveguide and vice versa.
Maximum squeezing occurs in the fundamental mode
when pt = m/m and m/ is integer. In this case, S§1)(t)
can be expressed as

n = 4a?.

St =m'n/p) = —nexp(—n), (19)

By evaluating the extreme values for (19) one finds that
the maximum squeezing in Sg)(t) is 37% when a = 0.5.
Also form (18) it can be proved that the maximum squeez-
ing involved in S%Q)(t) is the half of that of S§1)(t), ie.
18.5%. It is worth reminding that for the single-mode case

Cy=1,1ie. S%j) (t) is normalized. Now we clarify the role of
the switching mechanism in the behaviour of the coupler
since the Kerr-like media can generate nonclassical effects
regardless of entanglement between modes. This can be
understood by assuming that \; = Ay = 0, i.e. the linear
interaction between waveguides is neglected, and oy = 0.
In this case the fundamental mode cannot generate non-
classical effects, however, in the framework of coupler the
fundamental mode exhibits nonclassical effects. In other
words, entanglement between different components of the
system can generate as well as amplify the nonclassical
effects (if they exist). Information about this situation is
shown in Figure 2a for the given values of the parame-
ters. It is worth mentioning that for le)(t) of the two-
mode KNC (as well as S2(t) in Fig. 3a) the initial total
photon number has been considered equal to that of the
three-mode KNC for significant comparison. In this case
we have noted that the squeezing occurs only in the one of
the quadratures, i.e. in Y,, (X,)-quadrature for the funda-
mental (second) modes. Also squeezing generated in the
fundamental mode is much greater than that produced in
the second mode as well as in the single-mode of the two-
mode KNC. Influence of the values of the linear coupling
constants \;, i.e. the intensities of energy switching be-
tween the waveguides, on the evolution of the quadrature
squeezing is shown in Figures 2b and 2c for S?)(t) and
S§2)(t), respectively. It is worth mentioning that Q(ll)(t)
provides a behaviour typical to that shown in Figure 2b.
From Figure 2b one can see that additionally to the oc-

currence of the nonclassical squeezing the SF) (t) exhibits
leaf-revival-collapse phenomenon. Actually, there are two
requirements for occurring such phenomenon, which are:
(i) the linear and nonlinear couplings in the Hamilto-
nian (1) should contribute significantly to the dynamics of
the system. (ii) The energy exchange between the mode
under consideration with at least one of the modes in
the other waveguide is very strong. With this in mind

we can understand why Sf)(t) provides squeezing rather
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than RCP. This can be realized easily when Ay > Aq, i.e.
A/A2 >~ 0, az(t) = « and hence the time evolution of

Sf)(t) basically depends on the contribution of the Kerr-
like medium, which alone cannot produce RCP. Generally,
the behaviour of the system for this case can be explained
as follows. As Ay > A1, i.e. the energy switching mainly
occurs between the fundamental and third modes, which
behave as a two-mode KNC and the second mode prac-
tically does not affect the behaviour. Consequently, the
second mode behaves as an independent mode evolving in
a Kerr medium. In conclusion, when \; and Ay are large
or A1 > )Xo the squeezing factors for the fundamental and
second modes provide RCP. On the other hand, the oc-
currence of the RCP in the squeezing factors of the funda-
mental mode can be explained in the following sense [21].
The squeezing factors (16) include two forms of periodic
functions: one is coming from the self-cross-nonlinear in-
teraction part of (1), in particular, the exponential func-
tion whose period is 7/, and the other is arising from the
linear-interaction part whose period is 7/u. When the lin-
ear interaction between waveguides is very strong-either
between the fundamental-second or fundamental-third or
both—the period of the energy exchange between waveg-
uides decreases, i.e. many oscillations occur, till the inter-
action time becomes t = 7/, at this moment the field is
trapped instantaneously by nonlinearity in the waveguides
and the squeezing factors show collapse. The oscillations
of the RCP are caused by the linear coupling A; and the
envelope of the revivals is caused by the nonlinearity in
the system. As the interaction proceeds the phenomenon
is periodically repeated.

We have to stress that the evolution of the squeezing
factors is sensitive to the values of the intensities, how-
ever, in the strong-intensity regime it can provide nonclas-
sical squeezing instantaneously greater than that present
in Figure 2, but the behaviour becomes rather compli-
cated. We draw the attention to this point in the following
section.

3.2 Two-mode squeezing

In this part we study the two-mode squeezing in which
the correlation between modes starts to play a role.
Also we compare the behaviour here with the corre-
sponding one for the two-mode KNC. We restrict the
analysis to the fundamental-second (between waveguides)
and second-third modes (in the same waveguide). The
fundamental-second mode squeezing factors can be
straightforwardly evaluated as

S8 () = 2 [$00) + 520
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where S? ) and ng ) are given by (16) and ©; have the
same meaning as given above. The subscript 2 stands
for two-mode squeezing and the superscript (1,2) denotes
fundamental-second squeezing factor. The second-third
squeezing factors can be easily obtain from (20) by sim-
ply replacing 1 by 3. As we did above we analyse the case
(a1, a2,a3) = (@, 0,0) and xt = mn/2, m is odd integer,
for which expressions (20) reduce to

2

S§1’2)(t) — 9202 [)\_é sin?(ut) — cos(ut) exp(4e)] )
I

Q(21,2)(t) — 902 [cos(ut) — %sinQ(ut) exp(4e)] . (21)

Squeezing can be periodically realized in the two quadra-
tures for particular values of interaction time. The two-
mode squeezing between the second and third modes, i.e.
modes evolve in the same waveguide, for this special case is

A+ A2)?
(1!1722)“12(@),

(A1 + A2)?
2

S$I(t) = 202

(1) = 207 sin’(ut) exp(—de).  (22)

Squeezing can occur in the second quadrature only sim-
ilar to the single-mode case. Now we draw the attention
to the behaviour of the general forms (20), which are pre-
sented in Figures 3a and 3b for given values of the inter-
action parameters. From Figure 3a one can observe that
S§1’2)(t) and S3(t) exhibit nonclassical squeezing period-
ically. Complementary behaviours have been noticed for
Qém)(t) and Q2(t). Nevertheless, for modes evolving in
the same waveguide where switching mechanism does not
exist directly, squeezing occurs—for these values of inter-
action parameters—only in one of the two quadratures, i.e.
S§2’3) (t), as indicated by the solid curve. We have to stress
that the three-mode KNC provides amount of squeezing
in the framework of two-mode squeezing greater than that

of the two-mode KNC (compare the solid curve with the
short-dashed curve). The action of the coupling constant

is shown in Figure 3b for 552’3)@). From this figure it is
obvious that squeezing (or minimum-uncertainty light) al-
ways occurs and the amount of squeezing is greater than
that obtained for weak-coupling case (compare with the
solid curve in Fig. 3a). This means that the linear mecha-
nism in the system can play a significant role in amplifying
the nonclassical effects. RCP is remarkable, which always

+ 2{ [a1z (t) a2 (t) — any(t)azy (t)] cos Oz + [azs (t)any(t) + arq(t)azy (t)] sin @2} exp [—2e sin2(2xt)]
+ 2 [onz2 (t)x (t) + iy (t)azy (t)] — 4 [0z (t) cos O1 + ay(t) sin O1] [z (t) cos O1 + aay(t) sin O1] exp [—4e sin’ (xt)]

02 = 2 [0 + @]

- 2{ 012 ()2 (£) — 1y (£)aizy (£)] €08 Oa + [z (£) oty (£) + aa(t)any ()] sin @2} exp[—2esin®(2xt)]

+ 21z () oz (1) + any (E) ooy ()] — 4 [1y (t) cos O1 — () sin O1] [azy (£) cos O1 — aizg (t) sin O1] exp[—4esin® (xt)],

(20)



F.A.A. El-Orany et al.: Quantum properties of the codirectional three-mode Kerr nonlinear coupler

-0.1 1

Il

o

2
|

|
©
o
=

|

Squeezing factors
|

—0.17

459

Fig. 3. Evolution of the two-mode

squeezing factors for xy = 0.5 s7',
(a1,a2,a3) = (0,0.3,0.3) and for
(@ M = M = 1 s7' (long

dashed curve for S§1’2) (t), solid curve
for S*®(t), the short-dashed curve
is given for Sa(t) factor of the two-
mode KNC when (a1, a2, as, A1, A2) =
(0,0.3v/2,0,1 s71,0 s71)) and the
straight line is given for showing the

—0.25 Frrr e

occurs provided that A; or Ay or both are large. Also for
these cases we have noted that the two-mode squeezing
factors between the waveguides exhibit RCP somewhat
similar to that shown in Figure 2b.

Finally, for the three-mode squeezing factors we have
noted that squeezing periodically occurs in the two
quadratures similar to that of the two-mode case, in par-
ticular, the fundamental-second mode factors. Moreover,
the amount of squeezing achieved in the three-mode fac-
tors are greater than those in the single-mode and two-
mode factors. Also intense switching between the waveg-
uides provide RCP in the evolution of the three-mode
squeezing factors.

4 Quasiprobability distribution function

Quasiprobability distribution functions, namely, Wigner
W-, Husimi @- and Glauber P-functions [31], provide all
physical information about the quantum mechanical sys-
tems. Investigation of these functions for the quantum me-
chanical systems is one of the main topics in quantum
optics. Actually, among all quasiprobability functions W
function takes a considerable interest since it has been ex-
perimentally realized by different techniques, e.g. in homo-
dyne tomography [32], photon counting experiment [33]
and in experiments with trapped ions [34], and it is sen-
sitive to the interference in phase space. In this section
we investigate the single-mode quasiprobability distribu-
tion functions, in particular, W function for the system
under consideration. As the derivations of these functions
are similar with those in [21], we write down only the ex-
plicit formulae for them. Just here we give only outline
of the derivation. The solution (5) includes exponential
quadratic operator phase, which causes difficulties in eval-
uating the quasiprobability functions in the standard way.
Thus one has to use the technique given in [35], which ba-
sically depends on the formula (9), to achieve the goal. It
is worth reminding that the modes are initially prepared
in the coherent state |aq, a2, ag). Furthermore, we extend
the investigation to include the purity for the single-mode
case, which can be evaluated by means of the symmet-
ric characteristic function. Now the jth mode symmetric

LN e
0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 2.0 4.0 6.0 8.0

100 12e " squeezing bound), (b) S§2’3) (t) for A1 =
t 50 s Aa =1s""

characteristic function is [21]

Qi

Z Cnl (_C*)nQ na (t)d i (t)

ni'ng! J

Cs(c.t) = e (5P

ny ,n2:0

« F(2=1) =5 (n1-1)] exple(z"2 ™

1)l

Also the W function for the jth mode takes the form [21]:

(23)

W5(8,1) = = exp(~21P)

=
< D

n17n2:0

O ),

J
Tlg!

w T (n2=1)= 5 (n1-1)] exple(z"2 7™ — 1)]L2f_"1(2|ﬁ|2),

(24)

where L7(.) is the associated Laguerre polynomial of or-
der n and 8 = z + iy. One can easily verify that when
xt = m/m and m' is integer, the system produces co-
herent light with amplitude &;(¢) [21]. Furthermore, for
tx = (m’ +1/2)m and m’ is integer, expression (24) gives
that for the cat states (the derivation is given in the ap-
pendix of [21])

Wj (6; t) =
~fexp (<218 — iy (1)) + exp (<216 + iy (1))

+2exp [~2(BP + Dy)] sin (2085 (1) + 8°a; (1)) }
(25)

where
D; = e~ lay (O] (26)

Roughly speaking, this form tends to that of the YSCS [26]
in the jth mode when D; ~ 0 and &;(t) # 0. In contrast
to the two-mode KNC, the fundamental and second (or
third) modes of the three-mode KNC can provide different
types of cat states for certain choice of the interaction pa-
rameters. Now we give some analytical facts related to D;.
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Fig. 4. The W function for the single-mode case for x = 0.5 s7',t = 7 s and for a; = 0.9, \1 = A2 = 1/(2v/2) 57! (a)
(fundamental mode), (b) (second mode); and a1 = 2, a2 = a3 = 0 and A1 = A2 = 1/v/2 57! (c) (second mode).

There are three different special cases, which can be dis-
cussed for (25) based on the values of o; where we assume
A1 = Ao,

(i) When a; = a, j =1, 2, 3 for the fundamental and
second modes, we obtain

Dy = o® [1 + cos®(ut)]

Dy =a? {2 + %sin%ut)} . (27)
Expressions (27) show that Dy > Dy and D; ~ 0 only
when « < 1. This means that the cat states can be gen-
erated in the first waveguide faster than that in the sec-
ond waveguide. As « is relatively small the microscopic
cat states [35] can be generated in the two waveguides si-
multaneously. Trivially, statistical-mixture coherent states
can be generated for this case in dependence on the values
of the interaction parameters.
(ii) For (a1, aq,as) = (a,0,0) we obtain

Dy = o?sin?(ut),

Dy =a? {1 — %sinQ(,ut)} . (28)
Expressions (28) indicate that when the fundamental
mode provides YSCS in a macroscopical form o > 1,
say, when ut = 7, the second (or the third) produces
statistical-mixture coherent states, however, when a < 1,
YSCS in the microscopic forms are simultaneously gener-
ated in the two waveguides. This shows the crucial role
for the intensities of the initial light.
(iii) For (a1, a2, a3) = (0, ,0) we obtain

1
Dy =a? {1 ~3 sin2(ut)} ,

1
Dy = 202 {1 -3 sin® (gt)} sin® (%t) .

This case represents the inverse of the case (ii). The above
cases lead to an important fact: in order to obtain macro-
scopically distinguishable YSCS from a particular mode
it should be initially prepared in coherent state with large

(29)

intensity. Information on the above cases is shown in Fig-
ure 4 for the fundamental and second modes for given
values of interaction parameters. The values of the linear
constants A; have been chosen to minimize D;. In Fig-
ure 4a for the fundamental mode one can observe the two
Gaussian peaks and inverted negative peak in-between in-
dicating the occurrence of the interference in phase space.
Figure 4b (for the second mode) provides information on
the statistical-mixture coherent states, i.e. it shows two-
peak forms without interference in phase space. We have
to stress that in Figures 4a and 4b the states generated are
close to those of the microscopic regime. Figure 4c gives
the well-known shape for the W function of the macro-
scopically distinguishable YSCS. In this case the funda-
mental mode collapses to the state:

K
i—

1 (1)) = L 2) | — i@l(t»} :

V2

The W function for the second mode corresponding to
Figure 4c is that of the vacuum state, where as(t) ~ 0.
Actually, we have noted that such behaviours of the fun-
damental and second modes—related to Figure 4c and W
function of vacuum light—can be interchanged when one
usest=7s, a1 =az3=0,as =2, A1 = Ay =25 L.

In Figure 5 we illustrate the general case, when the
above special cases are no longer applicable. In these fig-
ures we consider ¢t = 12.38 s, where squeezing is well pro-
nounced in the behaviours of the single-mode case for the
fundamental and second modes. In these figures the non-
classical effects are presented as asymmetric multi-peak
structure indicating generation of the multi-component
cat states. Also Figure 5a includes additionally negative
values showing that the fundamental mode gives amount
of the nonclassical behaviour greater than that for the
second (or third) mode. This agrees with the explanation
given in Section 2. On the other hand, when A; > Ao
these negative values disappear and the W functions of
the fundamental and second modes are almost the same
(see Fig. 5¢). It is worthwhile mentioning that the cor-
responding W function for the two-mode KNC gives two
symmetric peaks without involving any negative values,
which is insensitive to the values of A\; (> 1). In conclusion,
the system can generate different types of YSCS depend-
ing on the values of the interaction parameters.

icia (1)) + exp ( (30)
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Fig. 5. The W function for x = 0.5 s7%, t = 12.38 s, a; = 1,

mode. Figure (c) is given for the fundamental mode for the case A\1 = 50 s™5, g = 1 57,

are the same as for (a).
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Entanglement characterizes intrinsically quantum-
mechanical correlations between quantum systems. In this
regard quantum entanglement is the basic resource re-
quired to implement several of the most important pro-
cesses studied by quantum information theory. Thus, we
discuss the single-mode degree of purity Trﬁ?(t) for the
system under consideration, which gives globally informa-
tion about the entanglement. Purity can be determined by
the knowledge of quantum state of the system, which in
turn can be obtained by quantum tomography [32]. Also
it is worth mentioning that in [36] entanglement has been
studied for the two-mode KNC driven by external classical
field showing that the system is able to generate Bell-like
states. Also in [37] the purity and the relative entropy are
investigated for the pumped dissipative nonlinear oscilla-
tor including Kerr nonlinearity. The purity can be eval-
uated by means of the symmetric characteristic function

through the relation
1 2 12
—— [1es¢ P

When Trp?(t) = 1 the mode under consideration is in a
pure state, i.e. the mode under consideration is disentan-
gled from the rest of the system, while when Trﬁ? (t)<1
the mode is in a mixed state and consequently it is entan-
gled with the rest of the system. The subsystems are most
entangled when their reduced density matrices are maxi-
mally mixed. Substituting (23) into (31) and after lengthy

(31)

and A\ = A\ = 1 s~ ! for the fundamen-
tal mode (a) and the second mode (b).

but straightforward calculation we arrive at
o0
ni,mi =0

+QZZ

mi1>mo n1=0

(1 + )l (1)t fay (¢) 2 )

[nﬂml ']2

Tp?(t) =

nl +m1 1)n1+m2|d.( )|2(n1+m1)

n1'm1'm2 (n1 +my1 — mgy)!

X exp [*46 sin? ((mg — ml)xt)] cosp(ni, mi, ma), (32)

where

Y(ny, my, ma) = 2xt(mae — mq)(me — ny). (33)

It is evident that (32) is dependent on the mean-photon
number for the mode under consideration. Thus for fixed
value of x and xt # mm, m is integer, the evolution of
the purity reflects well the switching mechanism of the
coupler provided that at least one of the initial intensities
is large. In relation to Figure 6, i.e. \; = Ao, a0 = a3 = «,
the mean-photon numbers for the fundamental and second
modes take the forms

| (2)]? = o2 cos?(ut) + 202 sin?(ut),
2
a2 (t)|? = a? cos?(ut) + 0‘2 sin?(ut). (34)

When «; are small, the mean-photon numbers of the fun-
damental and second modes would be relatively small and
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hence the evolution of the purity will be close to that of
the initial case (see Figs. 6a and 6b for given values of
the parameters). Also from Figure 6 we note that the fun-
damental and second modes tend to partial pure states,
i.e. close to pure states, when their mean-photon numbers
provide their initial values. In this case the components
of the system are approximately disentangled. Addition-
ally, the fundamental mode only tends to almost pure state
when the energies in the two waveguides are completely in-
terchanged. More illustratively, from these figures one can
observe that when ¢ = 0 s the two modes are in pure states.
When t increases and «; is large, entanglement between
modes through the interaction (1) is achieved and both
the fundamental and second modes become mixed. The
fundamental mode provides first maximum mixedness at
t ~ 0.69 s (see Fig. 6a). Actually, at this value of the inter-
action time, i.e. ¢t ~ 0.69 s, the mean-photon numbers for
the three modes are equal and consequently their purities
are equal, i.e. Trp3(t) ~ 0.37 (we have checked these facts).
When the interaction proceeds, switching energy between
waveguides continues until ¢ = 7/2 then the energies in
the waveguides are completely interchanged (cf. (34)). At
this moment the fundamental (second) mode is in par-
tial pure (maximum mixed) state since its mean-photon
number is small (large). This behaviour is repeated until
ut = 7 where the fundamental and second modes provide
their initial mean-photon numbers.

Now we draw the attention to find analytically the
values of the interaction time for which the modes of the
system are completely disentangled, i.e. Tr,é? (t) = 1. This
can be realized from (9) since all calculations in the pa-
per depend on this expression. Therefore the condition for
disentanglement is that

3 3
(L) ~T1 (a2

j=1

(35)

From the analysis given in the paper this occurs when
xt = mm, m is integer. In this case the modes are com-
pletely disentangled and each of which has a coherent light
with time-dependent amplitude. On the other hand, the
values of interaction times for which the system provides
its initial light can be obtained by solving simultaneously
the following two equations
ut =2m'n,  xt=mm, (36)
where m’ and m are integers. These equations are con-
nected with the requirements that @;(t) = «;. Equa-
tions (36) lead to the fact that the system tends to the
initial stage when p = x and pt = 2m/w. In this case the
linearity of the system compensates the nonlinearity.

5 Conclusion
In this paper we have discussed the quantum properties

for the three-mode codirectional nonlinear Kerr coupler,
when the modes are initially prepared in coherent light.

The European Physical Journal D

After obtaining the exact solution of equations of mo-
tion we have investigated single- and two-mode quadra-
ture squeezing, W function and purity. Various interesting
effects have been obtained. Different forms of squeez-
ing have been achieved by varying the parameters x, A;
and ;. Squeezing can be equally shared between the
guided modes and the interacting modes can behave as
two separated dynamical systems by controlling the inten-
sity of switching between waveguides. Quadrature squeez-
ing can exhibit leaf-revival-collapse phenomenon based on
the competition between the linearity and nonlinearity in
the system. Moreover, different forms of cat states have
been generated and confirmed in the evolution of W func-
tion. We have analytically proved that two different types
of cat states can be simultaneously realized in the evolu-
tion of the fundamental and second (third) modes. Also we
have discussed the mixedness for the single-mode case and
deduced the values of the interaction time as well as the
conditions required for complete disentanglement between
the components of the system. The nature of the cou-
pler has manifested itself in all studied quantities as com-
plementary between the behaviours of the fundamental
and second-third modes, i.e. as switching energy between
waveguides. Moreover, we have showed that the nonclas-
sical effects provided by the fundamental mode are richer
than those for both the second and third modes as well
as for the two-mode KNC. Finally, the system discussed
in this paper is more effective than the conventional Kerr
coupler and can be used to amplify the nonclassical effects.

J.P. and F.A.A E. thank the partial support from the grant
LNOOAO15 of the Czech Ministry of Education and from the
EU Project COST OCP 11.003.
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